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We study generic aspects of bubble dynamics in DNA under time-dependent perturbations, for example,
temperature change, by mapping the associated Fokker-Planck equation to a quantum time-dependent
Schrödinger equation with imaginary time. In the static case we show that the eigenequation is exactly the
same as that of the �-deformed nuclear liquid drop model, without the issue of noninteger angular momentum.
A universal breathing dynamics is demonstrated by using an approximate method in quantum mechanics. The
calculated bubble autocorrelation function qualitatively agrees with experimental data. Under time-dependent
modulations, utilizing the adiabatic approximation, bubble properties reveal memory effects.
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I. INTRODUCTION

The stability of the double helix structure of DNA can be
attributed to the phosphodiester bonds in the single-stranded
sugar backbone and hydrogen bonds between complemen-
tary base pairs of opposite strands. However, the hydrogen
bonds between parallel strands can be locally broken under
physiological conditions preceding events such as DNA rep-
lication, transcription, denaturation, and protein binding �1�.
A change in environmental conditions such as pH or tem-
perature may provide the energy required to progressively
open the hydrogen bonds, producing domains of single-
stranded DNA �bubbles�. Eventually, e.g., upon heating, de-
naturation occurs and the two strands separate altogether.
Understanding the underlying mechanisms behind breathing
fluctuations �2� and force-assisted denaturation �3� may pro-
vide further insights onto DNA structure and function.

Breathing dynamics was recently detected through fluo-
rescence fluctuations in a tagged double-stranded DNA �4�.
Various treatments were employed for simulating this effect:
the master-equation approach �5,6�, stochastic dynamic
simulations of the Dauxois-Peyrard-Bishop model �7�, and
by adopting the Poland-Scheraga free-energy function �8�,
considering the associated Fokker-Planck equation �9,10�.
Specifically, it has been suggested that thermally induced
breathing processes could be mapped into the quantum Cou-
lomb problem, with noninteger orbital angular momentum
�11�. Here the temperature, a parameter in the free energy,
plays a role in distinguishing repulsive from attractive Cou-
lombic potentials.

In this paper we are concerned with DNA bubble dynam-
ics when temperature, or other control parameters, varies in
time. Adopting a generic unpairing energy function, we study
the bubble survival behavior based on the mapping of the
Fokker-Planck equation with time-dependent parameters to
the quantum time-dependent Schrödinger equation with
imaginary time. By employing approximate quantum-
mechanics methods, a universal breathing dynamics is dem-
onstrated, insensitive to the details of the free-energy func-

tion. Moreover, we exemplify memory effects when external
parameters �e.g., temperature or pH� are slowly varied.

II. MODEL

The Poland-Scheraga free energy for a single bubble can
be written as �8,9�

F�x� = ��x� + ckBT ln�x + 1� + �0, �1�

with x�0 as the bubble size in units of base pairs. �0, the
free-energy barrier to form the initial bubble, is next omitted
as it only introduces a constant shift in energy. The entropy
loss associated with the formation of a closed polymer ring is
incorporated by the factor ckBT ln�x+1�, whereas ��x�
=2kBT�x��y�dy represents the free energy for the dissocia-
tion of x base pairs �12,13�, where kB is the Boltzmann con-
stant and T is the temperature. The function ��x� or ��y� may
be modeled based on experimental data. A simple model �9�
assumes that ��x�=−�1

�T
Tm

x, where �T=T−Tm with Tm being
the melting temperature and �1=4kBT�; T�=37 °C is the ref-
erence temperature. Since we are interested here in the time
evolution of the bubble distribution due to a change in a
parameter �, e.g., temperature or pH, we write �=���� ,x�,
where ��=�−�c; �c the critical value of �. Note that �
should be an odd function of ��.

At a finite temperature, the one-dimensional bubble dy-
namics can be modeled using the overdamped Langevin
equation with a Gaussian white noise �11�,

ẋ = − D
�F

�x
+ 	, �	�t�	�
�� = 2kBTD��t − 
� , �2�

where D is a kinetic coefficient of units �kBT�s�−1. The
corresponding probability density P= P�x , t� satisfies the
Fokker-Planck equation �14�,

�P

�t
=

�

�x
�f�P� +

1

2

�2P

�x2 , �3�

where f�=�f /�x and f�x�=F�x� /2kBT. The time variable was
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redefined as 2DkBTt→ t. Introducing a dressed transforma-

tion P=e−f�x�P̃=e−��x�/2kBT�x+1�−
P̃, where 
=c /2, leads to

−
� P̃

�t
= HP̃, H = −

1

2

�2

�x2 + V�x,t� , �4�

with a time-dependent potential energy

V�x,t� = U�x� +

�
 + 1�

2x2 −
� f

�t
, �5�

where we assumed that the time-dependent parameters are T
and �. The potential U�x� is given by

U�x� =
��x�2

2
+


��x�
x

−
���x�

2
, �6�

assuming that x�1. Equation �4� resembles the time-
dependent Schrödinger equation with imaginary time for a
particle in a time-dependent potential. For the static case the
dynamics superficially resembles the radial equation of a par-
ticle in a central potential U�x� with centrifugal barrier

�
+1� /2x2. However, in the quantum-mechanical case the
angular momentum 
 must be an integer. It is thus of fun-
damental interest to identify a quantum system which per-
mits real values for 
.

The Bohr Hamiltonian �15� in the nuclear liquid drop
model with a mass parameter B2=1 is given by ��=1�

HB = −
1

2
� 1

�4

�

��
�4 �

��
−

C5��,��
�2 	 + V��,�� . �7�

Here � and � are the parameters corresponding to the shape
of a nucleus as an incompressible drop with quadrupole de-
formation, � is the Euler angle onto the body-fixed axes, and
C5�� ,�� is the Casimir operator of the SO�5� group �16�. For
a family of potentials V�� ,��=U���+V��� /�2 �17�, the �
degree of freedom can be separated,

�−
1

2

�2

��2 + U��� +

�
 + 1�

2�2 	u��� = Eu��� ,

�C5��,�� + 2V�������,�� = �
�
 + 1� − 2����,�� , �8�

so as the Bohr Hamiltonian eigenstates are given by
u������ ,�� /�2. In a �-unstable situation, V���=0, where

=1,2 , . . . are integers. However, in general situations the
effective Hamiltonian H=− 1

2
�2

��2 +U���+ 
�
+1�
2�2 has the exact

same form as that of the breathing bubble �4� in the static
case, with � replaced with x and 
 is any positive number.
This suggests that a nuclear liquid drop model, rather than a
particle in a central potential �11�, better describes bubble
dynamics in double-stranded polymers.

III. STATIC LIMIT

When all variables are time independent the probability

density P̃ of Eq. �4� can be expanded in the normalized
eigenstates �n solving H�n=En�n,

P�x,t� = e−f�x�

n

cne−Ent�n�x� , �9�

where the coefficients cn are determined by the initial condi-
tion and the completeness of �n. We specify next the bound-
ary conditions and distinguish between scattering potentials
and binding potentials. To account for bubble closure absorb-
ing boundary conditions are taken for vanishing bubble size,
�n�0�=0. Likewise, for considering a complete denaturation
of a long strand with a maximum bubble size L, the absorb-
ing condition �n�L→��=0 is implied. In order to satisfy
both conditions, the family of functions ��x� should be
monotonic for large x values, so that V�x� is a binding po-
tential. For instance, if ��x� is a polynomial of degree M
�0, the generated potential V�x� �see Eqs. �5� and �6�� is
always a binding potential with the asymptotic behavior


�
 + 1�
2x2 →

x→0

�,
��x�2

2
→
x→�

� .

In contrast, if M =0, ��x� is a constant corresponding to the
Coulomb’s potential, and the total potential is now a scatter-
ing potential, allowing the function �n�L→�� to differ from
zero.

A. WKB analysis

When time approaches infinity, the transition probability
�9� reads

P�x,t�eEgt � cge−f�x��g�x� , �10�

where �g�x� is the ground state of the given potential with
eigenenergy Eg. In the scattering case �g�x� is an oscillating
function of x, while a bound ground state is usually nodeless
and localized at a certain region of x. What is the effect of
the factor e−f�x� on the dynamics? When acting on the scat-
tering ground state, it affects the long-time behavior of the
transition probability leading to closure or denaturation of
DNA bubbles �11�. On the other hand, a bound ground state
�g�x� approaches zero when x→�; thus, the role of the
e−f�x� factor becomes influential. If the speed of its diver-
gence is slower than the convergence of �g�x�, the bubble
tends to close rather than to denaturate, and vice versa.
Qualitative analysis can be made in terms of the traditional
WKB approximation �18�. The exponential factor of the
ground state is given by �g�x��exp�−�xdy
2�V�y�−Eg��;
Eg�V�y�. In the asymptotic large x limit, the probability
in �10�, omitting the time-dependent part, reduces to
P�x��exp�−�xdy���y�+
��y�2−2Eg��. For the Coulomb
potential, ��y�=�0 is a constant; therefore,
P�e−��0+��0�
/�
+1��x �19�. More generally, for bound poten-
tials, V�x→��=��x�2 /2; therefore, �g�x→���exp�
−�x���y��dy� yielding the probability distribution

P�x� � exp�− �x

���y� + ���y���dy� . �11�

Since the integrand is non-negative, �x���y�+ ���y���dy either
increases for ��y��0, leading to bubble closure, or does not
change with x for ��y��0, so as the integrated probability
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linearly scales with size. The WKB analysis thus provides a
universal long-time behavior, insensitive to the details of the
unpairing energy function. However, the WKB method is
usually not suitable for obtaining the exact functional behav-
ior; an example is provided below.

B. Exactly solvable example

The transition probability P from an initial bubble of size
x0 to a bubble of final size x at time t is given by Eq. �9� as

P�x,x0,t� = e−f�x�+f�x0�

n

e−Ent�n�x��n�x0� , �12�

with the initial condition P�x ,x0 ,0�=��x−x0�. At long times
it is approximately given by

P�x,x0,t�→
t→�

e−f�x�+f�x0�e−Egt�g�x��g�x0� . �13�

In order to simplify our analysis, we consider the following
expansion for the unpairing function: ��x�=�0+2�1x+O�x2�.
Truncating the series after the linear term results in ��x�
=2kBT��0x+�1x2�, generating the potential U�x�=2�1

2x2

+2�1�0x+

�0

x +
�0

2+2�1�2
−1�
2 �see Eq. �6��. If �1=0, the poten-

tial reduces to the Coulomb potential as in �11�. However,
since the effect of �1 dominates at large distances, one should
consider its contribution, for example, by using a perturba-
tion series �20�. For simplicity we assume next that �0=0,
resulting in the spiked harmonic-oscillator potential �5�

V�x� = 2�1
2x2 + �1�2
 − 1� +


�
 + 1�
2x2 , �14�

with the exact ground state �21�

�g�x� = � 
8��1�

�̃�
 + 3
2�	

1/2

�
2��1�x�
+1e−��1�x2
, �15�

where Eg= �3+2
���1�+�1�2
−1� and �̃�z� is the gamma
function. We substitute Eq. �15� into Eq. �13� and obtain

P�x,x0,t → �� � x
2�2��1��
+3/2�x0�2
+1

�̃�
 + 3
2�

e−��1+��1��x2

e−��1−��1��x0
2 e−Egt.

�16�

When �1�0, the distribution is localized near x=0, implying
bubble closure. In contrast, for �1�0 the distribution leans
toward larger x values �P�x�. The WKB approximation �11�
thus produced the correct exponential factor but it could not
provide the factor x. The correlation function C�t�, propor-
tional to the integrated survival probability, C�t�
��0

LP�x ,x0 , t�dx, where L is the length of the DNA chain,
can be recorded experimentally �4�. We explore next this
quantity as well as the first passage time distribution W�t�=
−dC�t� /dt.

We first study the �1�0 case. Using sum �12� we obtain a
superposition of exponentially decaying functions, corre-
sponding to various relaxation modes �4�,

C�t� =
�2�1�
+1/2x0

2
+1

�̃�
 + 3
2��
 + 1

2�−1 

n=0

�
�n+
+1/2Ln


+1/2�2�1x0
2�

n + 
 + 1
2

.

�17�

Here ��e−4�1t and Ln

+1/2 is the associated Laguerre polyno-

mial. The first passage time distribution could be exactly
calculated, taking the time derivative of this expression. At

=1 /2 it has the following form:

W
=1/2�t� = 8��1x0�2

e−4�1t exp� 2�1x0
2

1 − exp�4�1t�	
�1 − exp�− 4�1t��2 , �18�

with W�0�=W���=0, and a maximum in between, resulting
in a profile similar to that obtained in �11�. The correlation
function at 
=1 /2 is given by

C
=1/2�t� � 1 − exp� 2�1x0
2

1 − exp�4�1t�	 , �19�

with the long-time limit C
=1/2�t��e−4�1t. The bubble life-
time is therefore given by 
c=1 /4�1 or 
c= �4�1�
+ 1

2 ��−1 in
general cases �see Eq. �17��. On the other hand, at short
times, C
=1/2�t��1−exp�−x0

2 /2t�. Figure 1 presents the cor-
relation function using the analytical form ��x�=2�1x for the
unpairing free energy and 
=1 /2 �see Eq. �1��. Notice that
the curves at different �1, corresponding, e.g., to different
temperatures or DNA structures, follow the same universal
temporal behavior. When presented as a function of a res-
caled time �t→ t / t1/2, where C�t1/2�= 1

2 �, the plots collapse
into a single curve, in a good agreement with experiments �4�
and other theoretical treatments �6,22�. Incorporating �0
should result in a similar behavior.

We show next results for �1�0. In this case the DNA
fully denatures at long times and correlations diverge. At 

=1 /2 we can exactly obtain the first passage time distribu-
tion
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FIG. 1. Autocorrelation function at 
=1 /2 and x0=5 �Eq. �19��
for �1=0.1 �full curve�, �1=0.2 �dotted curve�, and �1=0.3 �dashed
curve�. Inset: the curves with rescaled times t→ t / t1/2.
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W
=1/2�t� =
8��1x0�2

e4��1�t − 1
�1 − exp�−

2��1�L2

exp�4��1�t� − 1
	�

�20�

and the corresponding correlation function C�t�. At long
times both scale as L2.

IV. TIME-DEPENDENT EFFECTS

The adiabatic approximation is standardly applied to de-
scribe the dynamic of systems under slowly varying time-
dependent Hamiltonians �18�. Since the relaxation time of
the bubble, on the order of 
s �4�, is typically shorter than
the modulation time of a parameter �, e.g., the temperature,
the quantum adiabatic approximation may be applied to de-
scribe the dynamics in the imaginary-time Schrödinger equa-
tion �4�. Defining an instantaneous basis of eigenenergies

H�t��n�t��=En�t��n�t��, we obtain �n � k̇�= �n�Ḣ�k�
�kn

, where �kn�t�
=Ek�t�−En�t�. In the axial representation the wave function
is written as ���t��=
nan�t�exp�−�0

t d
 En�
���n�t��. Substi-
tuting this into the imaginary-time Schrödinger, equation we
get

ȧn = − an�n�ṅ� − 

k�n

ak�t�
�n�Ḣ�k�

�kn
exp�− �

0

t

d
 �kn�
�	 .

�21�

Under the adiabatic approximation, the coefficients an�t�
evolve independently from each other since couplings
between states are negligible �18�. In the present case we

require that � �n�Ḣ�k�
�kn

�exp�−�0
t d
 �kn�
���1. If �kn�t��0,

the exponential factor is always less than 1, while for �kn
�0 it may diverge at long times. Therefore, the applicability
of the adiabatic approximation may be questionable for gen-
eral instantaneous states �23�, yet for the ground state it is

valid as long as the standard adiabatic condition � �n�Ḣ�k�
�kn

��1
holds. Under the adiabatic approximation the ground-state
amplitude evolves according to ȧg�−ag�g � ġ�. However,
since �n � ṅ� is zero for any one-dimensional real wave func-
tion, the overall function propagates as ��x , t�
��g�x , t�exp�−�0

t d
 Eg�
�� with �g�x , t� as the instanta-
neous solution. Consider, for example, the potential V�x , t�

= �2�1
2− �̇1�x2+�1�2
−1�+ 
�
+1�

2x2 �see Eqs. �4�–�6� and �14��,
which has analytical instantaneous eigenstates. To simplify,
we further assume that the system initially occupies the
ground state of the potential V�x , t=0�. Under the adiabatic
approximation,

P�x,t� �
�2� − 2�1�
/2+3/4


�̃�
 + 3
2�/2

xe−�x2
exp�− �

0

t

d
 Eg�
�	 ,

�22�

with the width parameter �=�1+ ��1
2−

�̇1

2 �1/2 and Eg�
�
=��
��2
+3�−4�1�
�. Rich information can be obtained due
to the time-dependent evolution of �1. First, both the width
of the distribution and the peak position depend on �̇1, the
rate at which the external parameters �e.g., temperature� is
changed. Second, the processes of increasing and decreasing
the control parameter may reach the same value �1, yet they
may result in different shapes of the bubble distribution.
Specifically, the correlation function C�t�� ��−�1�
/2+3/4

��1−e−�L2
�exp�−�0

t d
 Eg�
�� includes the decay factor
exp�−�0

t d
 Eg�
�� which memorizes the different pathways
that �1�t� undergoes. For example, the two paths �1�t�=1
+ t /100 and �1�t�=1+ t2 /100 attain the same value at t=1,
yet the values of �0

t d
 Eg�
� are obviously different, yielding
distinct characteristic decay times. We expect that this theo-
retical result could be observed experimentally.

V. SUMMARY

The dynamics of a single DNA bubble under time-
dependent perturbations was studied by mapping the associ-
ated Fokker-Planck equation to a quantum time-dependent
Schrödinger equation with imaginary time. For a generic un-
binding free-energy function, we analyzed bubble breathing
by using the WKB approximation, observing a universal be-
havior. Specifically, a spiked harmonic-oscillator potential
yielded results in qualitative agreement with experimental
data. Under slow time-dependent modulations of, e.g., the
temperature or pH, bubble dynamics reflects memory effects.
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